Computer Science/Coding Test
LeetCode: 64. Minimum Path Sum
focalpoint
2021. 9. 24. 21:35
가장 먼저 떠오르는 방법은 완전 탐색
--> Time Limit Exceeded
class Solution:
def minPathSum(self, grid: List[List[int]]) -> int:
n, m = len(grid), len(grid[0])
dp = [[int(1e9)] * m for _ in range(n)]
self.explorer(dp, grid, 0, 0, 0)
return dp[n-1][m-1]
def explorer(self, dp, grid, i, j, nowSum):
nowSum += grid[i][j]
if i == len(grid) - 1 and j == len(grid[0]) - 1:
dp[i][j] = min(dp[i][j], nowSum)
return
if nowSum < dp[i][j]:
dp[i][j] = nowSum
if i + 1 <= len(grid) - 1:
self.explorer(dp, grid, i+1, j, nowSum)
if j + 1 <= len(grid[0]) - 1:
self.explorer(dp, grid, i, j+1, nowSum)
오른쪽과 아래쪽으로만 움직일 수 있다는 제약을 이용한다.
dp[i][j]: grid[i][j]까지 오는 데 걸리는 최소 비용
dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j]
class Solution:
def minPathSum(self, grid: List[List[int]]) -> int:
n, m = len(grid), len(grid[0])
dp = [[0] * m for _ in range(n)]
dp[0][0] = grid[0][0]
for i in range(1, m):
dp[0][i] = dp[0][i-1] + grid[0][i]
for i in range(1, n):
dp[i][0] = dp[i-1][0] + grid[i][0]
for i in range(1, n):
for j in range(1, m):
dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j]
return dp[n-1][m-1]