일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- data science
- LeetCode
- 밴픽
- Python
- 315. Count of Smaller Numbers After Self
- Python Implementation
- iterator
- 109. Convert Sorted List to Binary Search Tree
- 컴퓨터의 구조
- shiba
- 운영체제
- Class
- 30. Substring with Concatenation of All Words
- Convert Sorted List to Binary Search Tree
- Substring with Concatenation of All Words
- attribute
- Decorator
- DWG
- Generator
- 프로그래머스
- kaggle
- 43. Multiply Strings
- Python Code
- concurrency
- Regular Expression
- t1
- Protocol
- 시바견
- 715. Range Module
- 파이썬
Archives
- Today
- Total
Scribbling
Segment Tree, Python Implementation 본문
Computer Science/Algorithms & Data Structures
Segment Tree, Python Implementation
focalpoint 2022. 1. 6. 13:31Below is the python implementation of segment tree data structure.
Segment tree is often used to query range sum within O(logN) time complexity.
As it is storing range information of the data, this data structure can be useful when you are looking for information on the basis of various ranges.
* Below implementation is for range sums.
class SegmentTreeNode:
def __init__(self, start, end, val, left=None, right=None):
self.start = start
self.end = end
self.mid = (start + end) // 2
self.val = val
self.left = left
self.right = right
class SegmentTree:
def __init__(self, nums):
self.nums = nums
self.root = self._build(0, len(nums)-1)
def _build(self, start, end):
if start == end:
return SegmentTreeNode(start, end, self.nums[start])
mid = (start + end) // 2
left = self._build(start, mid)
right = self._build(mid+1, end)
return SegmentTreeNode(start, end, left.val+right.val, left, right)
def query(self, ql, qr):
return self._query(self.root, ql, qr)
def _query(self, node, ql, qr):
if node.start == ql and node.end == qr:
return node.val
mid = node.mid
if qr <= mid:
return self._query(node.left, ql, qr)
if ql > mid:
return self._query(node.right, ql, qr)
return self._query(node.left, ql, mid) + self._query(node.right, mid+1, qr)
def update(self, idx, val):
delta = val - self.nums[idx]
self.nums[idx] = val
self._update(self.root, idx, delta)
def _update(self, node, idx, delta):
if node.start == node.end:
node.val += delta
return
node.val += delta
mid = node.mid
if idx <= mid:
self._update(node.left, idx, delta)
else:
self._update(node.right, idx, delta)
nums = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
tree = SegmentTree(nums)
tree.update(0, 9)
print(tree.query(0, 5))
tree.update(3, 17)
print(tree.query(0, 5))
'Computer Science > Algorithms & Data Structures' 카테고리의 다른 글
Shuffle Algorithm: Knuth Shuffle (0) | 2022.01.15 |
---|---|
AVL Tree, Python Code (0) | 2022.01.07 |
Priority Queue (0) | 2021.12.22 |
KMP 문자열 검색 알고리즘 (0) | 2021.08.29 |
위상 정렬 (0) | 2021.08.14 |