일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- 315. Count of Smaller Numbers After Self
- Python
- 컴퓨터의 구조
- DWG
- 30. Substring with Concatenation of All Words
- 43. Multiply Strings
- 프로그래머스
- kaggle
- 109. Convert Sorted List to Binary Search Tree
- shiba
- 밴픽
- LeetCode
- Regular Expression
- Protocol
- Generator
- Convert Sorted List to Binary Search Tree
- Decorator
- 715. Range Module
- t1
- concurrency
- 운영체제
- data science
- 파이썬
- attribute
- Python Implementation
- 시바견
- Class
- Substring with Concatenation of All Words
- iterator
- Python Code
Archives
- Today
- Total
Scribbling
LeetCode: 1639. Number of Ways to Form a Target String Given a Dictionary 본문
Computer Science/Algorithms & Data Structures
LeetCode: 1639. Number of Ways to Form a Target String Given a Dictionary
focalpoint 2023. 4. 7. 00:23
A dynamic programming approach:
Let dp[i, j] be the total number of cases of target[i] corresponding to jth position
dp[i, j] = dp[i][j-1] + dp[i-1][j-1] * counter[j, target[i]]
1) Bottom-up
import string
from functools import lru_cache
class Solution:
def numWays(self, words: List[str], target: str) -> int:
N = len(words[0])
freqs = [{c: 0 for c in string.ascii_lowercase} for _ in range(N)]
for word in words:
for i, c in enumerate(word):
freqs[i][c] += 1
m = len(target)
n = len(words[0])
dp = [[0] * n for _ in range(m)]
dp[0][0] = freqs[0][target[0]]
for i in range(1, n):
dp[0][i] = dp[0][i-1] + freqs[i][target[0]]
for i in range(1, m):
for j in range(1, n):
dp[i][j] = dp[i][j-1] + dp[i-1][j-1] * freqs[j][target[i]]
return dp[-1][-1] % (10**9+7)
2) Top-down
import string
from functools import lru_cache
class Solution:
def numWays(self, words: List[str], target: str) -> int:
N = len(words[0])
freqs = [{c: 0 for c in string.ascii_lowercase} for _ in range(N)]
for word in words:
for i, c in enumerate(word):
freqs[i][c] += 1
m = len(target)
n = len(words[0])
dp = [[0] * n for _ in range(m)]
@lru_cache(None)
def dfs(i, j):
nonlocal N, target
if i == len(target):
return 1
if j == N:
return 0
return (freqs[j][target[i]] * dfs(i+1, j+1) + dfs(i, j+1)) % (10**9+7)
return dfs(0, 0)