Scribbling

Google Cloud Platform Certificate; Professional Machine Learning Engineer 본문

Computer Science/Data Science

Google Cloud Platform Certificate; Professional Machine Learning Engineer

focalpoint 2022. 4. 12. 19:22

 

Architecture for MLOps using TFX, Kubeflow Pipelines, and Cloud Build

Link: https://cloud.google.com/architecture/architecture-for-mlops-using-tfx-kubeflow-pipelines-and-cloud-build

 

TFX, Kubeflow 파이프라인, Cloud Build를 사용하는 MLOps 아키텍처  |  클라우드 아키텍처 센터  |  Googl

의견 보내기 TFX, Kubeflow 파이프라인, Cloud Build를 사용하는 MLOps 아키텍처 이 문서에서는 TensorFlow Extended(TFX) 라이브러리를 사용하는 머신러닝(ML) 시스템의 전반적인 아키텍처를 설명합니다. 또한 C

cloud.google.com

- new data: only CT pipeline needed

- new pipeline or new implementation: CI/CD pipeline + CT pipeline needed

 

 

 

 

Data preprocessing for machine learning: options and recommendations

https://cloud.google.com/architecture/data-preprocessing-for-ml-with-tf-transform-pt1#where_to_do_preprocessing

 

머신러닝을 위한 데이터 사전 처리: 옵션 및 권장사항  |  클라우드 아키텍처 센터  |  Google Clou

의견 보내기 머신러닝을 위한 데이터 사전 처리: 옵션 및 권장사항 2부로 구성된 이 문서는 머신러닝(ML)을 위한 데이터 엔지니어링과 특성 추출이라는 주제를 살펴봅니다. 1부에 해당하는 이 문

cloud.google.com

* Full-pass transformation: use only the training data to compute statistics

 

 

 

 

 

De-identification and re-identification of PII in large-scale datasets using Cloud DLP

https://cloud.google.com/architecture/de-identification-re-identification-pii-using-cloud-dlp

 

Cloud DLP를 사용하여 대규모 데이터 세트에서 PII 익명화 및 재식별  |  클라우드 아키텍처 센터  

이 문서에서는 Cloud Data Loss Prevention(Cloud DLP)으로 자동 데이터 변환 파이프라인을 만들어 개인 식별 정보(PII)와 같은 민감한 정보를 익명화하는 방법을 설명합니다. 토큰화(가명처리)와 같은 익명

cloud.google.com

 

 

 

Machine Learning Crash Course

https://developers.google.com/machine-learning/crash-course/ml-intro

 

Introduction to Machine Learning  |  Machine Learning Crash Course  |  Google Developers

Send feedback Introduction to Machine Learning This module introduces Machine Learning (ML). Estimated Time: 3 minutes Learning Objectives Recognize the practical benefits of mastering machine learning Understand the philosophy behind machine learning Intr

developers.google.com

* Precision & Recall: Trade-off

- if decrease threshold, # TP & # FP increase -> Recall increase = Precision decrease

 

 

 

GCP Products

- best data pipeline, for stream and batch processing, necessary for stream

- SQL syntax, support ML models and importing TF models to the platform

- storage + analysis (fully managed)

- implement functions at this platform (new data -> pub/sub + cloud function)

- handles workflow for kubeflow pipeline

- use it to migrate from on-premises to GCP

- IaaS; Virtual machines

- modeling, training, analyzing, evaluation ... solution for managing ML models

- PaaS; platform that executes your code

- scheduler for task automation

- fully managed database for MYSQL

- fully managed database for large scale & low-latence workloads

- workflow orchestration service built on Apace Airflow

- data ingestion

- integrate data from multiple cloud sources

- Apache Spark & Hadoop clusters

 

 

 

 

Dumps

https://www.examtopics.com/exams/google/professional-machine-learning-engineer/

 

Google Professional Machine Learning Engineer Free Certification Exam Material | ExamTopics

 

www.examtopics.com

 

tf.distribute.MirroredStrategy supports synchronous distributed training on multiple GPUs on one machine.

tf.distribute.TPUStrategy lets you run your TensorFlow training on Tensor Processing Units (TPUs).

tf.distribute.MultiWorkerMirroredStrategy is very similar to MirroredStrategy. It implements synchronous distributed training across multiple workers, each with potentially multiple GPUs.

tf.distribute.OneDeviceStrategy is a strategy to place all variables and computation on a single specified device.