일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
- 30. Substring with Concatenation of All Words
- Python Implementation
- Class
- kaggle
- 프로그래머스
- Python
- Convert Sorted List to Binary Search Tree
- 컴퓨터의 구조
- 시바견
- 109. Convert Sorted List to Binary Search Tree
- DWG
- Protocol
- 315. Count of Smaller Numbers After Self
- Python Code
- 파이썬
- data science
- Decorator
- shiba
- LeetCode
- Substring with Concatenation of All Words
- iterator
- Generator
- 715. Range Module
- Regular Expression
- 운영체제
- 밴픽
- 43. Multiply Strings
- concurrency
- t1
- attribute
- Today
- Total
Scribbling
Google Cloud Platform Certificate; Professional Machine Learning Engineer 본문
Google Cloud Platform Certificate; Professional Machine Learning Engineer
focalpoint 2022. 4. 12. 19:22
Architecture for MLOps using TFX, Kubeflow Pipelines, and Cloud Build
TFX, Kubeflow 파이프라인, Cloud Build를 사용하는 MLOps 아키텍처 | 클라우드 아키텍처 센터 | Googl
의견 보내기 TFX, Kubeflow 파이프라인, Cloud Build를 사용하는 MLOps 아키텍처 이 문서에서는 TensorFlow Extended(TFX) 라이브러리를 사용하는 머신러닝(ML) 시스템의 전반적인 아키텍처를 설명합니다. 또한 C
cloud.google.com
- new data: only CT pipeline needed
- new pipeline or new implementation: CI/CD pipeline + CT pipeline needed
Data preprocessing for machine learning: options and recommendations
머신러닝을 위한 데이터 사전 처리: 옵션 및 권장사항 | 클라우드 아키텍처 센터 | Google Clou
의견 보내기 머신러닝을 위한 데이터 사전 처리: 옵션 및 권장사항 2부로 구성된 이 문서는 머신러닝(ML)을 위한 데이터 엔지니어링과 특성 추출이라는 주제를 살펴봅니다. 1부에 해당하는 이 문
cloud.google.com
* Full-pass transformation: use only the training data to compute statistics
De-identification and re-identification of PII in large-scale datasets using Cloud DLP
https://cloud.google.com/architecture/de-identification-re-identification-pii-using-cloud-dlp
Cloud DLP를 사용하여 대규모 데이터 세트에서 PII 익명화 및 재식별 | 클라우드 아키텍처 센터
이 문서에서는 Cloud Data Loss Prevention(Cloud DLP)으로 자동 데이터 변환 파이프라인을 만들어 개인 식별 정보(PII)와 같은 민감한 정보를 익명화하는 방법을 설명합니다. 토큰화(가명처리)와 같은 익명
cloud.google.com
Machine Learning Crash Course
https://developers.google.com/machine-learning/crash-course/ml-intro
Introduction to Machine Learning | Machine Learning Crash Course | Google Developers
Send feedback Introduction to Machine Learning This module introduces Machine Learning (ML). Estimated Time: 3 minutes Learning Objectives Recognize the practical benefits of mastering machine learning Understand the philosophy behind machine learning Intr
developers.google.com
* Precision & Recall: Trade-off
- if decrease threshold, # TP & # FP increase -> Recall increase = Precision decrease
GCP Products
- best data pipeline, for stream and batch processing, necessary for stream
- SQL syntax, support ML models and importing TF models to the platform
- storage + analysis (fully managed)
- implement functions at this platform (new data -> pub/sub + cloud function)
- handles workflow for kubeflow pipeline
- use it to migrate from on-premises to GCP
- IaaS; Virtual machines
- modeling, training, analyzing, evaluation ... solution for managing ML models
- PaaS; platform that executes your code
- scheduler for task automation
- fully managed database for MYSQL
- fully managed database for large scale & low-latence workloads
- workflow orchestration service built on Apace Airflow
- data ingestion
- integrate data from multiple cloud sources
- Apache Spark & Hadoop clusters
Dumps
https://www.examtopics.com/exams/google/professional-machine-learning-engineer/
Google Professional Machine Learning Engineer Free Certification Exam Material | ExamTopics
www.examtopics.com
tf.distribute.MirroredStrategy supports synchronous distributed training on multiple GPUs on one machine.
tf.distribute.TPUStrategy lets you run your TensorFlow training on Tensor Processing Units (TPUs).
tf.distribute.MultiWorkerMirroredStrategy is very similar to MirroredStrategy. It implements synchronous distributed training across multiple workers, each with potentially multiple GPUs.
tf.distribute.OneDeviceStrategy is a strategy to place all variables and computation on a single specified device.
'Computer Science > Data Science' 카테고리의 다른 글
Data Science 101 (1) | 2022.12.05 |
---|---|
Pandas Operations Repository (0) | 2022.11.20 |
(py)Spark Basics (0) | 2022.10.06 |
데이터 분석 방법의 기초 - Kaggle 타이타닉 예제 (0) | 2021.11.23 |
데이터 분석 방법의 기초 - Kaggle 주택 가격 예측 예제 (0) | 2021.11.23 |